

VISHAY INTERTECHNOLOGY, INC.

WSC/WSN WIREWOUND SURFACE MOUNT RESISTORS

Time to Make the Switch

Ъ П

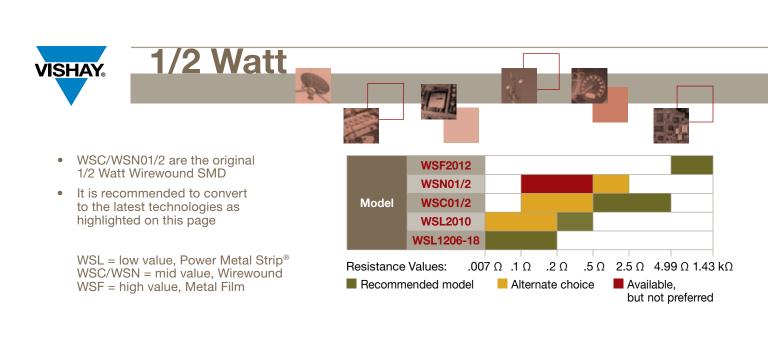
-S

TIV

Power Metal Strip® / Wirewound / Metal Film Resistors

Global Model	Power Rating	Resistance Range	RTC (ppm/ °C)	Tolerance	Dimensions	Applications
WSC4527 WSN4527	2.0 W	0.1 Ω - 0.30 Ω 0.31 Ω - 0.99 Ω 1.0 Ω - 9.99 Ω 10 Ω - 4.92 kΩ	±150 ±90 ±50 ±20	±0.5%, ±1.0%, ±5.0%	L = 0.455 in. [11.56 mm] W = 0.275 in. [6.98 mm] H = 0.167 in. [4.24 mm]	 Automotive controls (Engine control modules) Instrumentation
WSF4527	2.0 W	10 Ω - 100 kΩ	±100 ±50 ±25	±0.5%, ±1.0%, ±5.0%	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 Voltage divider circuits Networking/line cards
WSR3	3.0 W	0.01 Ω - 0.2 Ω*	±75	±0.5%, ±1.0%	L = 0.455 in. [11.56 mm] W = 0.275 in. [6.98 mm] H = 0.095 in. [2.41 mm]	 DC/DC converter in switching power supplies VRMs in notebook/ PCs Automotive controls (Body electronics and powertrain)
WSC6927 WSN6927	3.0 W	0.1 Ω - 0.30 Ω 0.31 Ω - 0.99 Ω 1.0 Ω - 9.99 Ω 10 Ω - 8 kΩ	±150 ±90 ±50 ±20	±0.5%, ±1.0%, ±5.0%	L = 0.690 in. [17.53 mm] W = 0.275 in. [6.98 mm] H = 0.280 in. [7.11 mm]	 Automotive controls (Engine control modules) Instrumentation Voltage divider circuits Satellite receivers

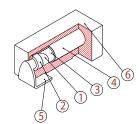
* For full resistance value range, reference http://www.vishay.com/doc?49049

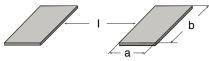

Performance Characteristics										
Test	Conditions of Test	Test Limits								
Test	Conditions of Test	WSL	WSR2	WSR3	WSC/WSN	WSF				
Thermal Shock	- 55 °C to + 150 °C, 1000 cycles	± (0.5% + 0.0005 Ω) ΔR	± (0.5% + 0.0005 Ω) ΔR	± (0.5% + 0.0005 Ω) ΔR	± (0.5% + 0.05 Ω) ΔR	± (1.0% + 0.05 Ω) ΔR				
Short Time Overload	5 x rated power for 5 seconds	± (0.5% + 0.0005 Ω) ΔR	± (0.5% + 0.0005 Ω) ΔR	± (2.0% + 0.0005 Ω) ΔR	± (0.2% + 0.05 Ω) ΔR	± (0.5% + 0.05 Ω) ΔR				
Low Temperature Storage	- 65 °C for 24 hrs.	± (0.5% + 0.0005 Ω) ΔR	± (0.5% + 0.0005 Ω) ΔR	± (0.5% + 0.0005 Ω) ΔR	± (0.2% + 0.05 Ω) ΔR	± (0.5% + 0.05 Ω) ΔR				
High Temperature Exposure	1000 hrs. at + 275 °C (+ 175 °C for WSL, WSC01/2, WSC0001, WSC0002, and WSF)	± (1.0% + 0.0005 Ω) ΔR	± (1.0% + 0.0005 Ω) ΔR	± (1.0% + 0.0005 Ω) ΔR	± (0.5% + 0.05 Ω) ΔR	± (1.0% + 0.05 Ω) ΔR				
Bias Humidity	+ 85 °C, 85% RH, 10% bias, 1000 hrs.	± (0.5% + 0.0005 Ω) ΔR	± (0.5% + 0.0005 Ω) ΔR	± (0.5% + 0.0005 Ω) ΔR	± (0.2% + 0.05 Ω) ΔR	± (0.5% + 0.05 Ω) ΔR				
Mechanical Shock	100 g for 11 milliseconds, 5 pulses	± (0.5% + 0.0005 Ω) ΔR	± (0.5% + 0.0005 Ω) ΔR	± (0.5% + 0.0005 Ω) ΔR	± (0.1% + 0.05 Ω) ΔR	± (0.5% + 0.05 Ω) ΔR				
Vibration	10 to 500 Hz in one min., 3 directions, 9 hrs.	± (0.5% + 0.0005 Ω) ΔR	± (0.5% + 0.0005 Ω) ΔR	± (0.5% + 0.0005 Ω) ΔR	± (0.1% + 0.05 Ω) ΔR	± (0.5% + 0.05 Ω) ΔR				
Load Life	1000 hrs. at rated power, + 70 °C, 1.5 hrs. "ON", 0.5 hrs. "OFF"	± (1.0% + 0.0005 Ω) ΔR	± (1.0% + 0.0005 Ω) ΔR	± (2.0% + 0.0005 Ω) ΔR	± (1.0% + 0.05 Ω) ΔR	± (1.0% + 0.05 Ω) ΔR				
Resistance to Solder Heat	+ 260 °C solder, 10-12 second dwell, 25 mm/second emergence	± (0.5% + 0.0005 Ω) ΔR	± (0.5% + 0.0005 Ω) ΔR	± (0.5% + 0.0005 Ω) ΔR	± (0.5% + 0.05 Ω) ΔR	± (0.5% + 0.05 Ω) ΔR				
Moisture Resistance	MIL-STD-202, method 106, 0% power	± (0.5% + 0.0005 Ω) ΔR	± (0.5% + 0.0005 Ω) ΔR	± (0.5% + 0.0005 Ω) ΔR	± (0.5% + 0.05 Ω) ΔR	± (0.5% + 0.05 Ω) ΔR				

Power Metal Strip[®] / Wirewound / Metal Film Resistors

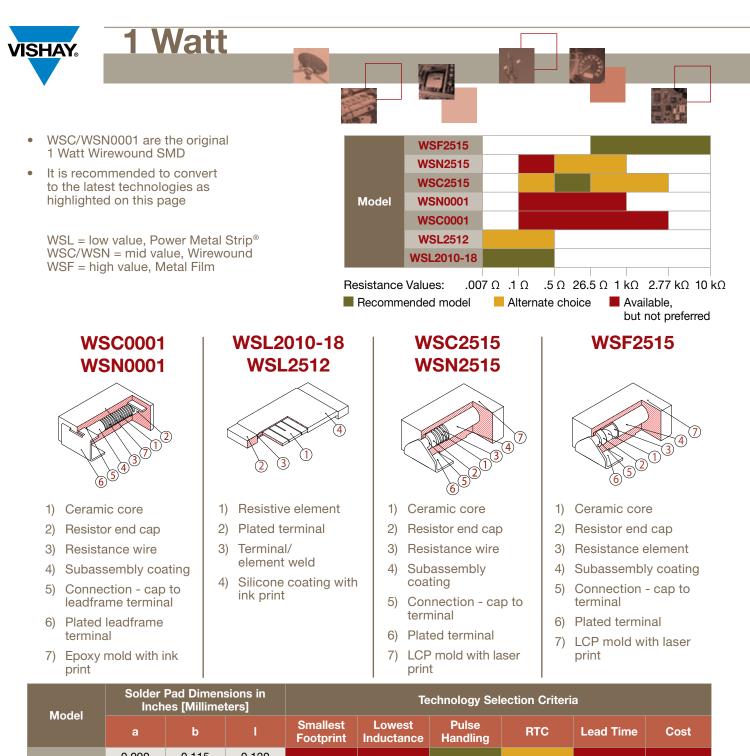
Vishay offers many technologies that cover broad resistance ranges and wattages. There have been many advancements since the release of the original Wirewound WSC and the following tables show the overlapping products that are available (grouped by wattage rating).

Global Model	Power Rating	Resistance Range	RTC (ppm/ °C)	Tolerance	Dimensions	Applications
WSL1206-18	0.5 W	0.007 Ω - 0.2 Ω*	±75	±0.5%, ±1.0%	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 Disc drive motor controls DC/DC converters Li-lon battery
WSL2010	0.5 W	0.007 Ω - 0.5 Ω*	±75	±0.5%, ±1.0%	$\begin{array}{rrrr} L &=& 0.200 \mbox{ in.} \ [5.08 \mbox{ mm}] \\ W &=& 0.100 \mbox{ in.} \ [2.54 \mbox{ mm}] \\ H &=& 0.025 \mbox{ in.} \ [0.64 \mbox{ mm}] \end{array}$	 VRMs in notebook PCs
WSC01/2 WSN01/2	0.5 W	0.1 Ω - 0.99 Ω 1.0 Ω - 4.99 Ω	±90 ±50	±0.5%, ±1.0%, ±5.0%	$\begin{array}{llllllllllllllllllllllllllllllllllll$	InstrumentationDC/DC converters
WSF2012	0.5 W	5.0 Ω - 1.43 kΩ	±100 ±50 ±25	±0.5%, ±1.0%, ±5.0%	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 Automotive controls (Body electronics and powertrain) Networking/line cards
WSL2010-18	1.0 W	0.007 Ω - 0.5 Ω*	±75	±0.5%, ±1.0%	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 Li-lon battery management DC/DC converters VRMs in notebook PCs
WSL2512	1.0 W	0.007 Ω - 0.5 Ω*	±75	±0.5%, ±1.0%	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 Disc drive motor controls VRMs in notebook/ PCs Automotive controls (Body electronics and powertrain)
WSC0001 WSN0001	1.0 W	0.1 Ω - 0.99 Ω 1.0 Ω - 26.50 Ω 26.51 Ω - 2.77 kΩ	±90 ±50 ±20	±0.5%, ±1.0%, ±5.0%	L = 0.250 in. [6.35 mm] W = 0.150 in. [3.81 mm] H = 0.110 in. [2.79 mm]	Automotive controls (Engine control modules)
WSC2515 WSN2515	1.0 W	0.1 Ω - 0.99 Ω 1.0 Ω - 26.50 Ω 26.51 Ω - 2.77 kΩ	±90 ±50 ±20	±0.5%, ±1.0%, ±5.0%	L = 0.250 in. [6.35 mm] W = 0.150 in. [3.81 mm] H = 0.110 in. [2.79 mm]	 Instrumentation Voltage divider circuits
WSF2515	1.0 W	26.5 Ω - 10 kΩ	±100 ±50 ±25	±0.5%, ±1.0%, ±5.0%	L = 0.250 in. [6.35 mm] W = 0.150 in. [3.81 mm] H = 0.110 in. [2.79 mm]	 Automotive controls (Body electronics and powertrain) Networking/line cards
WSR2	2.0 W	0.01 Ω - 1.0 Ω*	±75	±0.5%, ±1.0%	L = 0.455 in. [11.56 mm] W = 0.275 in. [6.98 mm] H = 0.095 in. [2.41 mm]	 DC/DC converter in switching power supplies VRMs in notebook/ PCs Instrumentation Automotive controls (Body electronics and powertrain)
WSC0002 WSN0002	2.0 W	0.1 Ω - 0.99 Ω 1.0 Ω - 9.99 Ω 10 Ω - 4.92 kΩ	±90 ±50 ±20	±0.5%, ±1.0%, ±5.0%	L = 0.445 in. [11.30 mm] W = 0.275 in. [6.98 mm] H = 0.162 in. [4.11 mm]	 Automotive controls (Engine control modules) Instrumentation Voltage divider circuits Networking/line cards

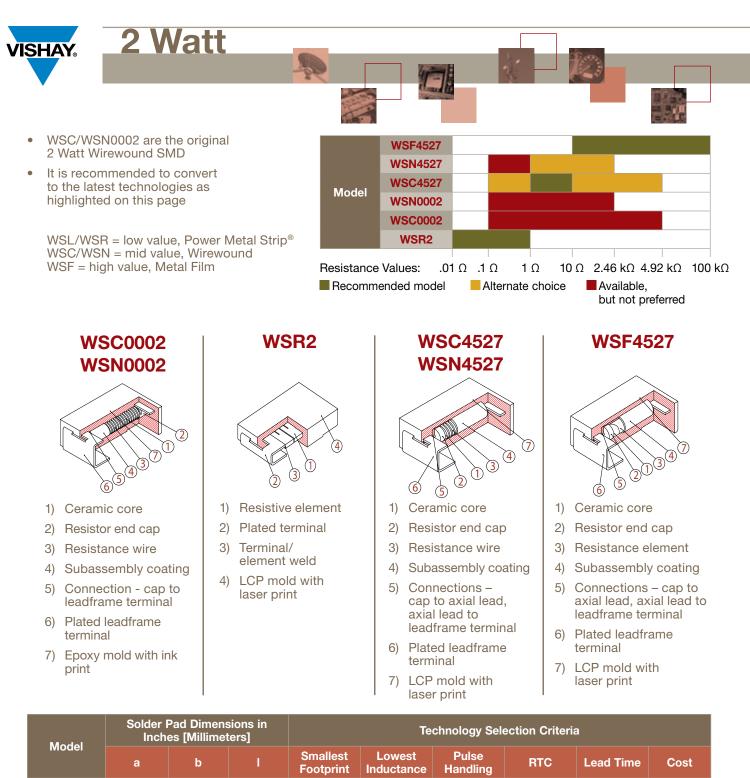

- WSC01/2 WSN01/2
- 2) Resistor end cap
- 3) Resistance wire
- 4) Subassembly coating
- 5) Plated terminal
- 6) Epoxy mold with ink print


WSL1206-18

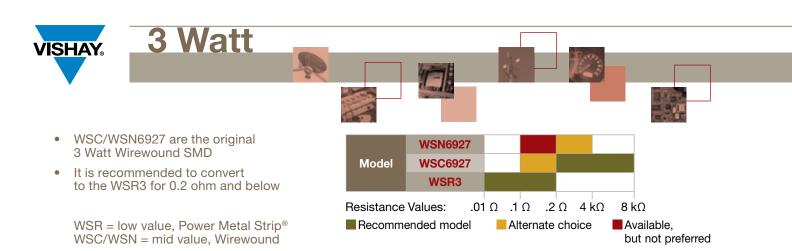
- 1) Resistive element
- 2) Plated terminal
- 3) Terminal/element weld
- 4) Silicone coating with ink print

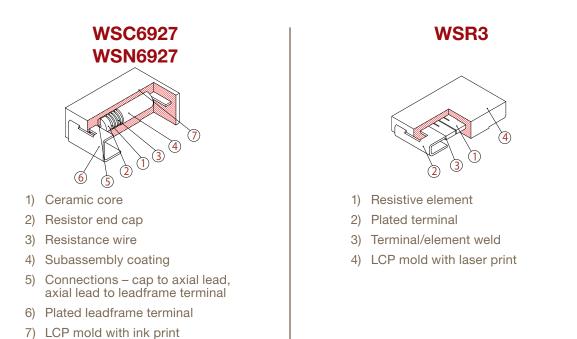


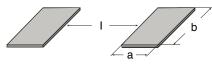
- 1) Ceramic core
- 2) Resistor end cap
- 3) Resistance element
- 4) Subassembly coating
- 5) Plated terminal
- 6) Epoxy mold with ink print



Solder Pad Layout


Model	Solder Pad Dimensions in Inches [Millimeters]			Technology Selection Criteria						
Model	а	b	I	Smallest Footprint	Lowest Inductance	Pulse Handling	RTC	Lead Time	Cost	
WSC01/2	0.085 [2.16]	0.070 [1.78]	0.080 [2.03]	Good	Good	Best	Better	Better	Good	
WSN01/2	0.085 [2.16]	0.070 [1.78]	0.080 [2.03]	Good	Better	Better	Better	Good	Good	
WSL1206-18	0.050 [1.27]	0.070 [1.78]	0.055 [1.40]	Best	Best	Better	Best	Best	Better	
WSL2010	0.055 [1.40]	0.120 [3.05]	0.130 [3.30]	Better	Best	Best	Best	Best	Best	
WSF2012	0.085 [2.16]	0.070 [1.78]	0.080 [2.03]	Good	Better	Good	Good	Better	Better	




	а	b	I	Footprint	Inductance	Handling	RTC	Lead Time	Cost
WSC0001	0.090 [2.29]	0.115 [2.92]	0.120 [3.05]	Good	Good	Best	Better	Good	Good
WSN0001	0.090 [2.29]	0.115 [2.92]	0.120 [3.05]	Good	Better	Better	Better	Good	Good
WSC2515	0.090 [2.29]	0.115 [2.92]	0.120 [3.05]	Good	Good	Best	Better	Better	Better
WSN2515	0.090 [2.29]	0.115 [2.92]	0.120 [3.05]	Good	Better	Better	Better	Good	Good
WSL2010-18	0.055 [1.40]	0.120 [3.05]	0.130 [3.30]	Best	Best	Better	Best	Best	Best
WSL2512	0.065 [1.65]	0.145 [3.68]	0.160 [4.06]	Better	Best	Best	Best	Best	Best
WSF2515	0.090 [2.29]	0.115 [2.92]	0.120 [3.05]	Good	Better	Good	Good	Better	Better

Model			le i Sj								
woder	а	b	I	Smallest Footprint	Lowest Inductance	Pulse Handling	RTC	Lead Time	Cost		
WSC0002	0.155 [3.94]	0.230 [5.84]	0.205 [5.21]	Good	Good	Best	Better	Good	Good		
WSN0002	0.155 [3.94]	0.230 [5.84]	0.205 [5.21]	Good	Better	Better	Better	Good	Good		
WSC4527	0.155 [3.94]	0.230 [5.84]	0.205 [5.21]	Good	Good	Better	Better	Better	Better		
WSN4527	0.155 [3.94]	0.230 [5.84]	0.205 [5.21]	Good	Better	Better	Better	Good	Good		
WSR2	0.155 [3.94]	0.230 [5.84]	0.205 [5.21]	Best	Best	Best	Best	Best	Best		
WSF4527	0.155 [3.94]	0.230 [5.94]	0.205 [5.21]	Good	Better	Good	Good	Better	Better		

Solder Pad Layout

Model	Solder Pad Dimensions in Inches [Millimeters]			Technology Selection Criteria						
Woder	а	b	I	Smallest Footprint	Lowest Inductance	Pulse Handling	RTC	Lead Time	Cost	
WSC6927	0.155 [3.94]	0.235 [5.97]	0.470 [11.94]	Good	Good	Good	Good	Better	Better	
WSN6927	0.155 [3.94]	0.235 [5.97]	0.470 [11.94]	Good	Better	Good	Good	Good	Good	
WSR3	0.155 [3.94]	0.230 [5.84]	0.205 [5.21]	Best	Best	Best	Best	Best	Best	

SEMICONDUCTORS:

PASSIVE COMPONENTS:

One of the World's Largest of Discrete Semiconductors and Passive Components

THE AMERICAS

UNITED STATES

ASIA

SINGAPORE

SINGAPOHE VISHAY INTERTECHNOLOGY ASIA PTE LTD. 25 TAMPINES STREET 92 KEPPEL BUILDING #02-00 SINGAPORE 528877 PH: +65-6788-6668 FAX: +65-6788-0988

P.R.C.

JAPAN

EUROPE

GERMANY

FRANCE

NETHERLANDS